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This paper presents an experimental study of the momentum and heat transport in a
turbulent magnetohydrodynamic duct flow with strong wall jets at the walls parallel
to the magnetic field. Local turbulent flow quantities are measured by a traversable
combined temperature-potential-difference probe. The simultaneous measurements of
time-dependent velocity and temperature signals facilitates the evaluation of Reynolds
stresses and turbulent heat fluxes. Integral quantities such as pressure drop and tem-
perature at the heated wall are evaluated and compared with results from conservative
design correlations. At strong enough magnetic fields the destabilizing effect of strong
shear generated at the sidewalls wins the competition with the damping effect by
Joule’s dissipation and turbulent side layers are created. Due to the strong non-
isotropic character of the electromagnetic forces, the turbulence structure is charac-
terized by large-scale two-dimensional vortices with their axis aligned in the direction
of the magnetic field. As most of the turbulent kinetic energy is concentrated in the
near-wall turbulent side layers, the temperatures at the heated wall are governed by
the development of the thermal boundary layer in the turbulent flow.

1. Introduction
This study has been motivated by the design work of self-cooled liquid-metal fusion

blankets where circulating liquid metals such as lithium or a lithium-lead alloy are
considered as a coolant and as a breeder material. As the flow of the electrically well-
conducting fluid within the blanket is exposed to the strong magnetic field confining
the fusion plasma, electric currents are induced in the fluid. The interaction of these
currents with the applied magnetic field introduces Lorentz forces to the momentum
balance of the flow and a magnetohydrodynamic (MHD) flow is established in the
blanket channels.

Although under blanket conditions intense volumetric heat sources caused by γ-
radiation and Joule’s dissipation are present, the high heat flux at the plasma-facing
wall is the central issue of the heat transfer because it determines the temperature
at the heat-loaded plasma-facing first wall that has to be kept within acceptable
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Figure 1. Geometry and coordinates of the investigated heat transfer problem. The flow pattern
expected in the midplane at y = 0 is projected onto the upper Hartmann wall.

limits defined by material properties. For a fundamental study, blanket conditions are
simplified to the heat transfer problem schematically illustrated in figure 1.

A constant surface heat flux q is applied to one wall of a straight rectangular duct
of an aspect ratio 2 : 1 and removed by a liquid metal MHD flow of velocity u. The
heated wall belongs to the part of the walls that are oriented parallel to the applied
magnetic field B called the sidewalls. The walls perpendicular to the magnetic field
are called the Hartmann walls. The boundary layers developing along the duct walls
are called side layers and Hartmann layers, respectively. The walls are considered to
be thin and of finite electrical conductivity. Conducting properties are expressed by
the non-dimensional wall conductance ratios cH and cS of Hartmann and sidewalls
defined as

c =
σWs

σa
, (1.1)

where σW and σ are the electrical conductivities of the wall material and the fluid,
s is the thickness of the duct wall considered and a the characteristic length of the
duct, i.e. the half-width of the square duct in the direction of the magnetic field. As
high flow velocities are required for reliable heat removal, the convective–diffusive
heat transfer in the blanket is governed by developing thermal boundary layers.

In the range of fusion-relevant strong magnetic fields, the Lorentz and pressure
forces dominate the momentum balance of the flow and cause strong electromagnetic
damping by Joule’s dissipation. As this MHD dissipation damps out motion on a
short time scale of τJD ∼ ρ/σB2 depending on the magnitude of magnetic induction B,
the density ρ and the electrical conductivity of the fluid σ (see Shercliff 1965), turbulent
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velocity fluctuations are expected to vanish very fast. Thus, MHD research in channel
flows has been frequently focused on stationary inertialess assumptions related to
laminar flow. Although the velocity distributions and the pressure drop are sometimes
well represented by such asymptotic solutions, turbulent velocity fluctuations have
been observed in many experiments. Their existence may be of crucial importance
for the removal of heat from high-heat-loaded walls. Heat transfer based on laminar
flow requires high flow velocities which may lead to technically unacceptable pressure
losses. If turbulent heat transport can be taken into account, the required flow rate
may be reduced and the lower pressure drop may lead to simpler technical designs.

The structure of the paper is as follows:
In § 2 the governing equations, their scaling and the non-dimensional numbers are

outlined. In § 3 some basic phenomena of turbulent MHD flows in rectangular ducts
and general aspects of heat transfer are discussed. The experimental setup is explained
in § 4 with particular emphasis on the use of potential probes to obtain local turbulent
flow quantities. The experimental results of the isothermal flow are presented in § 5.
There the onset of turbulence and its structure is considered and the effect of this
special kind of turbulence on the time-averaged flow is discussed. The influence of
turbulent mixing on the temperature field is elaborated in § 6 from measurements in
which a heat flux is applied to one of the sidewalls.

2. Governing equations and relevant dimensionless groups
Many MHD flows in technical applications are well described by the limiting case

of small magnetic Reynolds numbers Rm� 1 with Rm = µσv0a representing the ratio
of the magnetic field induced by the fluid motion to the externally applied magnetic
field. Here, v0 is the characteristic velocity, i.e. the mean velocity of the duct flow,
and µ is the magnetic permeability. In this case the isothermal, non-buoyant flow of
the Newtonian fluid is governed by the following set of inductionless equations for
conservation of mass, momentum and charge:

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∆v +Nj × B, (2.2)

∇ · j = 0, (2.3)

and by Ohm’s law for moving media

j = −∇φ+ v × B. (2.4)

In these equations v = (u, v, w), j = (jx, jy,jz), B = (bx, by, bz), φ, t and p denote the
non-dimensional velocity, current density, magnetic field, electric potential, time and
pressure, scaled with v0, σv0B, B, av0B, τ0 and ρv2

0 . The time scale is defined by the
advection time of the duct flow calculated from the characteristic velocity and length
scale as τ0 = a/v0. In addition a characteristic frequency f0 based on the characteristic
time scale is obtained by f0 = v0/a.

The Reynolds number is given as

Re =
av0

ν
(2.5)

and denotes the ratio of inertial and viscous forces in the momentum equation with
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the kinematic viscosity ν. The interaction parameter

N =
σaB2

0

ρv0

(2.6)

represents the ratio of inertia and electrodynamic forces. The product NRe gives the
square of the Hartmann number

M = aB

(
σ

ρν

)1/2

(2.7)

that governs the flow at laminar, fully developed conditions by the balance between
viscous and Lorentz forces.

Neglecting volumetric heat sources, the distribution of the non-dimensional tem-
perature T in the flow is determined by the equation

∂T

∂t
+ (v · ∇)T =

1

Pe
∆T . (2.8)

The dimensionless temperature T is associated with the dimensional one T ∗ as
T = (T ∗ − Ti)/∆T with the mean temperature at the entrance of the heated section
Ti as a reference and a temperature difference ∆T = qa/λ given by the magnitude
of the wall heat flux q and the thermal conductivity λ of the fluid. The ratio of
convective and diffusive heat fluxes is given by the Péclet number

Pe =
v0a

κ
, (2.9)

where κ is the thermal diffusivity defined as κ=λ/ρcp with the specific heat capacity cp.
Introducing Reynolds decomposition of the flow variables, e.g. u = u + u′ and

T = T + T ′, with the mean parts denoted by an overbar and the fluctuating
parts denoted by a prime, into equations (2.1)–(2.4) and (2.8) and averaging in
time one obtains the mean flow equations of mass, momentum, charge and heat.
These equations contain additional contributions from the non-vanishing correlations
between fluctuations u′ and T ′, namely −∇u′u′ in the momentum equation and
−∇u′T ′ in the temperature equation. Appropriate knowledge of these quantities is
crucial for dealing with any turbulent flow in general and for the development of
valid turbulence models for MHD flows in particular. So apart from determining
integral flow quantities like the pressure drop and the temperatures at the heated wall
this paper is focused on the determination of Reynolds stresses u′u′ and turbulent
heat fluxes u′T ′ as well as on some other properties of the fluctuating part of the flow
with particular emphasis on the wall region.

3. Some basic phenomena
3.1. MHD turbulence in rectangular ducts

MHD flows in rectangular ducts with conducting walls are characterized by two
jet-like shear layers along the sidewalls of the duct parallel to the magnetic field
and a core region with almost constant velocity. Figure 2(a) shows a typical laminar
velocity distribution in a rectangular duct obtained from an asymptotic solution. As
illustrated by the velocity distribution in the midplane of the duct in figure 2(b) an
increase of the intensity of the applied magnetic field or M, respectively, causes the jet
velocity to increases as M1/2, whereas the width δ of the wall jets decreases as M−1/2.
The enhanced shear of order M in the jet is capable of producing turbulent velocity
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Figure 2. Distribution of non-dimensional laminar velocity in a fully developed MHD rectangular
duct flow of ascpect ratio 1 : 2, obtained from an asymptotic solution. The wall conductance ratios
are cH = 0.0119 for both Hartmann walls and cs = 0.0714 for both sidewalls. (a) Three-dimensional
distribution at M = 600. (b) The effect of increasing the Hartmann number from M = 300 to
M = 4800 illustrated by the velocity distributions in the midplane (y = 0).

fluctuations even if the flow rate is maintained constant. No mechanical or electrical
turbulence promoters are required in such a case. The turbulence promoting effect
of the magnetic field in terms of shaping the velocity profile is opposed by Joule’s
dissipation which is also increasing with the intensity of the magnetic field. A linear
stability analysis by Ting et al. (1991) yields that in the range of high magnetic fields
both effects oppose each other and the critical flow rate becomes independent of the
intensity of the applied magnetic field.

At first sight the strong electromagnetic damping of time-dependent turbulent
motion seems to make a significant improvement of heat transfer by turbulent
transport impossible, but one has to realize on the other side that the Lorentz force
has a strong non-isotropic character. Turbulent velocity fluctuations in the direction of
the magnetic field decrease quickly by the effect of strong Joule’s dissipation whereas
turbulent fluctuations in the plane perpendicular to the direction of the magnetic
field are only weakly damped. This anisotropic feature leads to the formation of
extended vortex tubes oriented parallel to the applied magnetic field provided that
the strength of the applied magnetic field is high enough and inertial forces do not
further destabilize the flow.

This tendency of vortices in MHD flows to evolve into increasingly two-dimensional
vortex columns aligned with the magnetic field was described by Davidson (1995)
in the limit case of high Reynolds numbers and small magnetic Reynolds numbers.
Concerning axisymmetric, isolated vortices evolving in both space and time in an
otherwise quiescent fluid he finds that the component of angular momentum aligned
with the magnetic field is conserved whereas components non-aligned with the mag-
netic field are removed on a fast time scale. The Lorenz force elongates vortices along
the field lines and thereby Joule’s dissipation is continuously reduced.
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Scaling the decay time of isotropic turbulence in MHD flows defined as τJD = ρ/σB2

(see § 1) with the eddy turnover time τTO = l/v0 as a characteristic time scale for the
vortex motion gives the non-dimensional decay time of turbulence

τ∗JD =
1

Nl

, (3.1)

which proves to be the inverse of an interaction parameter Nl = σlB2
0/ρv0 based on

the characteristic length scale l of the turbulence structure. If Nl becomes small the
momentum equation asymptotes towards the hydrodynamic balance. If on the other
hand Nl is large, disturbances of the flow decay on a fast time scale. Provided that
the fluctuating part of the velocity in forced turbulence is independent of the length
scale, the damping of isotropic turbulence increases with the size of the eddies and
therefore higher isotropy is expected in the small turbulence scales. However, small
eddies are damped by viscosity on a time scale τV = l2/ν. The ratio of the eddy
turnover time to the viscous time scale is

τ∗V = Re l , (3.2)

the Reynolds number based on the characteristic length of the eddy.
If we restrict ourselves to situations where Re l is large and Nl is moderate or

large, an isolated vortex can be considered as approximately inviscid. An initially
three-dimensional disturbance will then evolve into an increasingly two-dimensional
structure in the sense that the velocity distribution becomes uniform in the direction
of the magnetic field.

In the range of large interaction parameters Sommeria & Moreau (1982) have
described the tendency of turbulent structures to extend in the direction of magnetic
field lines, as a preferred electromagnetic diffusion process of vorticity ω = ∇ × v
in this particular direction. In the limit Rm � 1 it is characterized by a diffusivity
α = σB2

0 l⊥/ρ, based on the length scale l⊥ perpendicular to the magnetic field of the
eddy, which renders differences in the velocity of two transverse planes of distance d
apart to be equalized on a time scale τD ≈ (ρ/σB2

0)(d2/l2⊥).
If the magnetic forces act for long enough time any differences in the velocity

distribution along the direction of magnetic field are removed and a pure two-
dimensional turbulent flow is established provided that this is consistent with the
boundary conditions. The possibility of creating two-dimensional turbulence in strong
magnetic fields was conjectured by Kit & Tsinober (1971); for a review of later
developments, see Tsinober (1990) and for more recent results Oughton, Priest &
Matthaeus (1994) and Zikanov & Thess.

In purely two-dimensional flow the effect of a magnetic field is reduced to main-
taining the two-dimensionality but the flow itself is governed by two-dimensional
hydrodynamics. However, in duct flows no-slip conditions at walls have to be satis-
fied. The diffusion of vorticity along magnetic field lines leads to a uniform velocity
distribution along the magnetic field in the core and to the formation of Hartmann
layers at the Hartmann walls. The existence of such quasi-two-dimensional (Q2D)
turbulent MHD flow has been demonstrated by Platnieks (1972) and Kolesnikov &
Tsinober (1972a). In Q2D flows, the Hartmann layers and the conducting Hartmann
walls offer an additional path for the electric currents induced in the core region,
because the induced electric potential is smaller due to the reduced circulating motion.
The electromagnetic forces induce in this case the dissipation of kinetic energy from
the core region by Joule’s dissipation in the Hartmann walls and Joule’s and viscous
dissipation in the Hartmann layers. The time scale for this process, called Hartmann
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braking, is given by Sommeria & Moreau (1982) for insulated Hartmann walls. Bühler
(1996) extended the theory of Hartmann braking to thin conducting Hartmann walls
of conductivity cH and derives the expression

τ∗H =

(
Nl⊥
M

+
cHNl⊥
1 + cH

)−1

, (3.3)

where the current path in the wall is represented by the second term in the brackets.
If τ∗H is moderate or large, the turbulent motion of the Q2D turbulent flow is only
weakly damped and a vortex may exist for several turnover times, even when it
is not driven by shear. Thus with the parameter τ∗H it can be estimated whether
regions with no shear remain laminar or whether turbulence can penetrate them.
The Hartmann braking of eddies was used by Kolesnikov & Tsinober (1972b) in
experiments investigating the flow behind a cylinder.

The generation of turbulence in the jet-like shear layers of MHD rectangular duct
flow at high Hartmann numbers (2900 < M < 5400) was investigated first by Reed &
Picologlou (1989). They obtained information on the streamwise velocity component
in the channel midplane by a traversable potential probe. Above a critical Reynolds
number of 2650 < Recrit < 5100, large velocity fluctuations u′ of the order of the mean
flow u have been observed in the near-wall jet regions whereas the flow in the core
region remains laminar. Although the width of the turbulent side layer δS was not
directly measured, they suggested a scaling law δS = a/N1/3. The turbulence observed
is distinguished from ordinary hydrodynamic (OHD) turbulence by its regular time
structure and its lack of small-scale structures.

3.2. Heat transfer

Only a few studies of developing thermal boundary layers in turbulent MHD flows
have been carried out up to now, see e.g. Sukoriansky & Branover (1988), Barleon et al.
(1996) and Evtushenko et al. (1995), and the present state of research is far from being
satisfactory. For instance Kirillov, et al. (1995) have estimated the temperature at the
heated wall in the region of developing thermal boundary layers from a boundary
layer solution for the temperature assuming laminar slug flow. At constant wall heat
flux the non-dimensional temperature at the wall–fluid interface TW increases as

TW = 2(ζ/π)1/2, (3.4)

where ζ = x/Pe is the thermal developing length of the flow starting at the beginning
of the heated section. With the formation of large-scale two-dimensional vortices in
the side layers, turbulent heat transport is expected to improve the heat removal
from the wall. The question of whether this turbulence retains three-dimensional
isotropic features or exhibits a more or less strong tendency to a non-isotropic
quasi-two-dimensional character is very important with regard to additional pressure
losses caused by dissipation of turbulent kinetic energy. Isotropic turbulence in MHD
flows is in general extremely dissipative. Its occurrence will cause high additional
pressure losses that might annihilate the positive effect of heat transfer improvement
by turbulent flow. However, non-isotropy is achieved by the formation of turbulent
eddies aligned with the magnetic field, thereby the dissipation of turbulent kinetic
energy by Joule’s dissipation is significantly reduced and Q2D turbulent flow may be
maintained without additional pressure losses.
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Figure 3. Experimental setup. (a) Arrangement of the test section and the heater in the mag-
netic gap and distribution of magnetic induction along the flow direction. (b) Cross-section with
instrumentation.

4. Experimental setup and instrumentation
The test channel is a rectangular stainless steel tube with an aspect ratio 2 : 1 and

a characteristic length of a = 40 mm. Both sidewalls are 6 mm thick, the Hartmann
walls only 1 mm to reduce the Hartmann braking of turbulence. A eutectic sodium–
potassium alloy Na22K78 is circulated at mean velocities up to 2 m s−1. The wall
conductance ratios of the side and the Hartmann walls are calculated from (1.1)
as cS = 0.0714 and cH = 0.0119. The heat flux of q = 15 W cm−2 is produced by
an electrically powered radiation heater along a heated length of 500 mm or 12.5a
respectively. The test section is placed in the gap of an electro-magnet where the
intensity of the uniform magnetic field can be varied from 0.25 T up to 2 T. In
figure 3(a) the arrangement of the test section and the heater in the magnetic gap is
sketched.The length scale in this picture is the characteristic length scale of the duct
a. The graph B versus x illustrates the distribution of the strength of the magnetic
field along the axial flow direction. The heater is located in the centre part of the
magnetic gap and the beginning of the heated length is defined as x = 0. Thus an
axial developing length of approximately 11a in the fringing field and of 3.75a in the
region of homogeneous magnetic field is provided before the heated section starts.
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Figure 4. (a) Geometry and coordinates of the sensing tip of the four-pole temperature-potential
probe. (b) Evaluation of velocity components u and w.

In figure 3(b) a cross-section of the duct is shown including instrumentation. The
instrumentation used in this experiment consists of two sets. The first one records the
integral quantities like pressure drop and temperatures at the heated wall. Therefore
pressure taps with an inner diameter of 2 mm are fitted to the non-heated sidewall
at axial distances of 6.25a and within the region of homogeneous magnetic field. The
average inlet and outlet temperatures Ti and To at both ends of the test section are
measured by temperature integrators fitted into the duct (see figure 3a). In order to
measure the temperature at the wall–fluid interface three Cu−CuNi thermocouples
with a diameter of 0.5 mm are placed along the centreline (y = 0) of the heated sidewall
at three different axial positions with a distance of 6.25a between each of them.

The second set of instrumentation is installed to record local flow quantities and
information about the turbulence structure within the flow. For this purpose probes
are traversed in the channel midplane (y = 0) in the z-direction. In addition, the
electric potential is measured on the outer surface of the Hartmann wall, just above
the sensing tip of the probe, by a line of six spring loaded needles. All probe
measurements presented here are taken at x = 12.25 close to the end of the heated
section.

As pressure taps and thermocouples are commonly used and can be considered as
well understood instrumentations, we will focus our attention on the use of potential
probes. Our measurements are performed with the aid of a four-pole temperature-
potential probe, which simultaneously records the potential differences for all three
components of ∇φ = (φx, φy, φz). This is possible by the non-coplanar arrangement
of the four electrodes sketched in figure 4(a).Three electrodes (0, 1, 3) are arranged
in a plane perpendicular to the magnetic field, a fourth one (2) is placed just above
the central one (0) in the direction of the magnetic field. The distance from the tip
of the central electrode to the tips of all the other ones is de = 1.41 mm. This gives
a maximal scale of the sensing tip of about 2 mm and a spacial resolution of about
0.1a. The derivatives of the electric potential are determined by measuring the voltage
∆φ between two electrodes distance de apart.

In inductionless MHD flows (Rm � 1), information about the velocity field can
be evaluated from the electric potential induced by the fluid motion using Ohm’s
law (2.4). This technique is known as induction velocimetry and an overview of the
principle and the various applications has been given by Shercliff (1962) and Baker
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(1983). However, the spanwise and the streamwise velocity components in the plane
perpendicular to the magnetic field u and w cannot be calculated until the current
density j is known. Reed et al. (1986) find that for laminar MHD duct flow the current
density in the fluid can be neglected if the condition 1/M � c� 1 holds. Sommeria
& Moreau (1982) assess the errors caused by neglecting the current density in Q2D
flows with insulating walls to be of the order N−1. Although these arguments have
often been used, direct information can be obtained from experimental data. Namely,
if the magnetic field direction is parallel to the y-direction as in the experiment, the
current density jy = −φy can be evaluated directly (see Kit 1970). The finding of small
jy compared to φx and φz , together with the conservation of charge (2.3), may serve
as an indication but not proof, that the current density in the plane perpendicular to
the magnetic field is also small and the velocities perpendicular to the magnetic field
can be evaluated as u = −φz and w = φx. This is consistent with the well known
tendency of magnetic field to remove gradients along its direction. It is noteworthy
that there is an additional mechanism of quasi-two-dimensionalization of the flow
structure in the wall-jet region. This is because in this region ∂/∂x ∼ ∂/∂z ∼ O(1),
whereas ∂/∂y ∼ O(M−1/2). Both effects contribute to the tendency of the local flow
structure to become quasi-two-dimensional and both are weakened as the flow in the
sidewall jet becomes turbulent. We are not able in this study to distinguish between
the two mechanisms.

Figure 4(b) illustrates the determination of the velocity components u and w
perpendicular to the magnetic field from the probe measurements. The tips of the
electrodes define the x̃, ỹ, z̃-coordinate system in which the velocity components ũ and
w̃ are determined from Ohm’s law (2.4). Transformation onto the x, y, z-coordinate
system of the duct yields the velocity components u and w.

In order to measure both the velocity and the temperature simultaneously each
electrode is made of a Ni − CrNi thermocouple with a diameter of 0.25 mm. The
thermopairing is electrically insulated from the stainless steel jacket measuring the
electric potential and therefore cross-talking between the electric potential and tem-
perature measurement is avoided. From such a probe mean values and fluctuations of
velocities and temperature can be evaluated and from these the turbulent transport
properties of the Reynolds stress tensor and the Reynolds heat fluxes, namely u′2, w′2,
u′w′, u′T ′ and w′T ′, can be derived.

Moreover, from knowledge of the full gradient vector of the electric potential the
degree of isotropy of a turbulent flow can be estimated by several means. Tsinober,
Kit & Teitel (1987) derived precise relations between statistical properties of the
turbulent velocity and the electric potential field induced by the fluid motion. From
their results the following two isotropy coefficients can be defined as a measure for
the anisotropy of the turbulent flow:

Ax =
2(φ′y)2

(φ′x)2
, Az =

2(φ′y)2

(φ′z)2
. (4.1)

In isotropic turbulence both isotropy coefficients Ax and Az take a value of 1. In
perfect two-dimensional turbulence, the absence of any potential difference along
magnetic field lines makes the mean square value (φ′y)2 vanish and both coefficients
become zero. A similar behaviour can be expected in Q2D turbulence because the
current density in the direction of magnetic field remains small.

The degree of isotropy of fluctuations of a distinct frequency or a frequency range is
obtained by evaluating Ax and Az in terms of coefficients Ei(f) of the one-dimensional
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Re = 3.3× 103 1.5× 104 3.0× 104 6.0× 104 1.0× 105

u0 (m s−1) = 0.08 0.32 0.64 1.28 2.00

M = 600 B (T) = 0.25 N = 109 24 12 6 3.6
1200 0.5 436 96 48 24 14.4
2400 1.0 1745 384 192 96 57.6
3300 1.4 6982 1536 768 384 230
4800 2.0 27927 6144 3072 1536 922

Table 1. Non-dimensional parameters Re, M, and N = M2/Re and approximate dimensional
values of mean velocity u0 and magnetic field B.

power spectra of ∇φ:

Ax(f) =
2Ey
Ex

, Az(f) =
2Ey
Ez

. (4.2)

A further important assessment of the degree of isotropy can be obtained from the
probability density function (PDF)

Pcos θ = PDF (cos [B,∇φ′]) (4.3)

of the cosine of the angle θ + [B,∇φ′] between the direction of the magnetic field
B and the fluctuating part of ∇φ. Figure 5 shows the following principal behaviour
of the PDF: In purely two-dimensional turbulent flow, the fluctuating part of ∇φ
is strictly perpendicular to the magnetic field and thus cos θ is always zero. In this
case the PDF is a delta function. Deviations from the pure two-dimensional state
are indicated as the PDF broadens. In the limiting case of isotropic turbulence all
angles θ occur with the same probability and the PDF of θ becomes a white noise
distribution.

For Q2D flow, variations of the electric potential across the Hartmann layers are
expected to be negligible and therefore the distribution of the electric potential of the
core region is expected to be mapped onto the Hartmann walls. Therefore, similarly to
the evaluation of the probe signals, the electric potential difference, measured between
two electrodes at the Hartmann wall, can be used to evaluate the axial velocity by
the relation uw = −φz .

5. Results for isothermal flow
For investigating the characteristics of isothermal flow a first series of experiments

has been performed without heating the sidewall. In table 1 the corresponding
parameters are summarized. Also, dimensional values of the magnetic field and the
velocity are given. If not mentioned otherwise, all results are presented in non-
dimensional form according to the scaling introduced in § 2.

5.1. Laminar velocity distribution and onset of instabilities

At small flow rates no fluctuations of the electric potential recorded by the probe
are observed and the flow is therefore characterized as laminar. In figure 6(a) the
distribution of the axial velocity component u in the midplane (y = 0) is plotted in one
half of the cross-section for Re = 3.3× 103 and Hartmann numbers 600, 1200, 2400
and 4800. The known tendencies of increasing peak velocity coupled with decreasing
thickness of the side layer at increasing Hartmann number is well represented by the
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measurements. Because of insufficient resolution of the probe the velocity could not
be evaluated closer to the wall than up to the position z = 0.45. In figure 6(b) the
measured velocity distributions at M = 600 and M = 4800 are compared with results
from an asymptotic solution in the jet region. The asymptotic solution overestimates
the peak velocity in the jet as clearly seen at M = 600, whereas the width of the
jet is clearly underestimated. However, the measured and the calculated velocities in
the core region agree very well. Whether the deviations in the side layer arise from
an interaction of the probe with the jet or whether it is a real flow effect cannot be
clarified by other means in this experiment.

As the Reynolds number is increased beyond a critical value Rec, fluctuations of
the probe signals associated with local unsteady flow phenomena are observed in
the side layers, in the range 0.40 < z < 0.45. In figure 7 the influence of different
Hartmann numbers on the experimentally observed critical Reynolds number Rec is
shown. Within the range of Hartmann numbers investigated the change of the critical
Reynolds number is not significant from a technical point of view. However some
decrease of the critical Reynolds number with increasing Hartmann numbers at a
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rate close to M−1/4 is observed from the measurements. This observation supports the
conjecture of stronger nonlinearities at higher Hartmann numbers made in § 3 and
is in contradiction with the results of a linear stability analysis performed by Ting
et al. (1991). They predict the critical Reynolds number to be independent of the
Hartmann number. But it has to be mentioned that the measurement of the critical
Reynolds number may also be influenced by the decreasing sensivity of the potential
probe at lower magnetic fields.

5.2. The degree of anisotropy

In order to evaluate velocity fluctuations from the electric potential probe (see figure 4)
the fluctuations of the electric potential in the direction of the magnetic field have
to be small compared to those in directions perpendicular to the magnetic field.
This matter is discussed in terms of the mean values (φ′x)2, (φ′y)2 and (φ′z)2 of all
components of the electric potential gradient ∇φ, evaluated from the probe. In figure 8
results obtained in the near-wall position z = 0.45 and for the lowest and the highest
experimentally realized Hartmann number are plotted versus the Reynolds number.

In the laminar flow region (Re < 6000) a formal evaluation of the probe voltage
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output gives non-zero mean-square values due to random noise of the electronic
circuitry. Due to the scaling of the electrical potential with the magnetic field B and
the flow rate u0 (see § 2) the noise level decreases generally with the Reynolds number
as Re−2. Since the contribution of noise to the mean-square value is independent of
the flow rate, the level of noise determined in the laminar region may be extrapolated
to higher Re by a straight line of slope −2. If the Reynolds number exceeds its
critical value, the mean-square values emerge from their individual level of noise
and a measurable signal caused by turbulent velocity fluctuations is clearly identified
in figure 8. In the time-dependent region the mean-square values grow fast, but
level off for the high Hartmann number M = 4800 to a saturation level and thus
become practically independent of the Reynolds number. Similar behaviour can be
observed down to a Hartmann number of M = 1200. At the lower Hartmann number
M = 600 all contributions of (∇φ′)2 are significantly smaller than for M = 4800. It
may be conjectured that the reduced shear of the sidewall jet here is too weak to
promote intense velocity fluctuations. Although (φ′x)2 and (φ′z)2 are increasing fast
above critical conditions at M = 600 they decrease again at high Reynolds numbers.
Most probably this effect is related to a not fully developed state of the turbulent
flow because the interaction parameter that governs the temporal evolution of the
turbulent flow decreases with both decreasing M and increasing Re.

At M = 600, (φ′y)2 emerges from the level of noise only at the very high Reynolds

numbers Re = 105 and no relevant value of (φ′y)2 is obtained for Re 5 105. From

the significantly higher values of (φ′x)2 and (φ′z)2 in the turbulent region a strong
non-isotropic, quasi-two-dimensional turbulence structure can already be expected at
M = 600. Formally this is obtained by applying the isotropy relations (4.1) with the
assumption of (φ′y)2 ≈ 0. In case of the high Hartmann number M = 4800 the value

of (φ′y)2 differs significantly from the noise and the conditions (4.1) and (4.2) can be
applied quantitatively to judge the degree of anisotropy in the flow.

In figure 9 the isotropy coefficients Ax and Az are plotted versus the interaction
parameter N at the near-wall position z = 0.45. The measurements were performed
at Hartmann numbers in the range 600 < M < 4800 and only those values are taken
into account where (φ′y)2 significantly exceeds the level of noise.

With increasing interaction parameter both isotropy coefficients generally decrease.
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This indicates that the turbulent flow becomes less isotropic when N is increased as it
is predicted from (3.1). Moreover, the differences between the two coefficients Ax and
Az show that the turbulent velocity fluctuations are not even isotropic in the plane
perpendicular to the magnetic field at this position of the probe.

In figure 10 the isotropy of the velocity field is characterized by the PDF of the
cosine of the angle between magnetic field and ∇φ′ defined by relation (4.3). Here, a
series of PDFs for increasing Hartmann numbers at the highest achievable Reynolds
number Re = 1.0× 105 is presented.

At the lowest Hartmann number M = 600 the non-zero values of the Pcos θ function
have a maximum around cos [B,∇φ′] = 0 and anisotropy of the turbulent flow is thus
clearly indicated. The increase of the Hartmann number to M = 1200 results in a
spiky shape of the Pcos θ function that indicates a much higher degree of anisotropy of
turbulence. If the Hartmann number is further increased to M = 2400 and M = 4800,
the Pcos θ functions broaden again showing a clear tendency of the turbulent flow to
more isotropy. This effect is presumably due to the increased shear in the side layers at
higher magnetic fields that leads to stronger nonlinearity. The interaction parameter
of N = 3.6 (M = 600 and Re = 1.0× 105) is the smallest that can be achieved in the



262 U. Burr, L. Barleon, U. Müller and A. Tsinober

test facility employed. An increase in Hartmann number or a decrease of Reynolds
number result in higher interaction parameters and thus increase the tendency towards
two-dimensionality. This fact has been validated by the similar behaviour of the Pcos θ

function observed for measurements performed at other parameters.
From the non-dimensional decay time of isotropic turbulence given by expression

(3.1) a tendency to higher isotropy is expected also for the smaller turbulence scales. In
figure 11 the isotropy coefficients Ax and Az obtained from power spectra (see equation
(4.2)) are plotted versus the frequency f for a Hartmann number of M = 4800 and
the two Reynolds numbers Re = 3.0 × 104 and Re = 1.0 × 105 respectively. The
frequency f is normalized with the advection time of the duct flow. Using Taylor’s
hypothesis, meaning that vortices are convected with the mean velocity, one can
obtain an appropriate non-dimensional length scale for the vortex dimension. At both
Reynolds numbers the spectral values of the isotropy coefficients are increasing with
increasing frequency. This observation supports our conjecture that a higher degree of
isotropy can generally be observed at smaller length scales. Moreover a comparison
of both diagrams shows that the tendency to higher isotropy at smaller scales is
more significant at smaller interaction parameter. Although the isotropy coefficients
become larger for small-scale turbulent structures, i.e. for higher frequencies, even
the smallest vortices detectable by the probe and corresponding to f ≈ 10 remain
strongly non-isotropic.

From the evaluation of the isotropy coefficients and the corresponding PDFs it can
be inferred that the turbulence in the side layer has at least locally a non-isotropic,
two-dimensional structure in the whole range of parameters investigated. In such a
turbulent MHD flow the current density in the fluid remains small in the sense that
the fluctuations of the potential gradient in the direction of the magnetic field are
small compared to those in the directions perpendicular to the magnetic field. As
outlined in § 4 the time-dependent transverse velocities u and w can now be evaluated
from the electric potential using Ohm’s law.

5.3. The structure of the turbulent flow

The structure of Q2D turbulent MHD flow is significantly different from ordinary
turbulent flows. Instead of a three-dimensional cascading process towards smaller
scales, Q2D vortices tend to evolve into larger structures forming more regular flow
patterns than ordinary turbulence.

Careful observations of the flow in the range of parameters have shown a variety
of time-dependent flow phenomena. Here we will focus the discussion on dominant
effects and certain similarities observed in broad parameter ranges.

An impression of the structure of the turbulent flow in the side layer can be
obtained from the time series of the signals of the probe at the position z = 0.45 and
of all wall potential-difference probes (see figure 3b). The fluctuating parts of these
signals are plotted all together in figure 12 for the Hartmann number M = 4800 and
the Reynolds number Re = 1.5× 104.

Significant fluctuations of the velocity components u′ and w′ with an amplitude
comparable with the mean flow velocity are visible from the time series of the
probe. These fluctuations can be associated with large vortices which either occur
in regular groups or as single events. Small-scale structures with different durations
occur between the vortex groups or even individual vortices. The current density
component in the direction of magnetic field j ′y shows no significant fluctuations and
thus underlines again that the turbulent flow is Q2D even in the small scales.

The streamwise velocity fluctuations u′w,5 recorded on the Hartmann wall in the
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same position z = 0.45 as the probe are very well correlated with the signals of the
probe u′. On the other hand the amplitude of the signal is about a factor of 10 smaller.
Although the eddies identified in the midplane are clearly aligned with the magnetic
field up to the Hartmann walls, their fluctuating intensity is detected as being much
smaller by measurements on the Hartmann wall and the strong non-isotropy detected
by the probe is therefore valid locally only. It cannot be explained clearly from the
instrumentation installed in this test section whether the intensity of vortices decreases
continuously from the midplane to the Hartmann walls or whether it is only limited to
the Hartmann layers. However, velocity fluctuations measured at the Hartmann wall
give at least a qualitative picture of the turbulent flow in the core region of the duct.
Comparing the time series recorded by all the wall potential probes, we find that the
amplitudes of the large vortices are detected simultaneously along the whole chain of
installed wall probes. The signals can be interpreted as turbulent flow characterized
by large eddies of approximately uniform size which are convected downstream at a
constant distance from the sidewall as sketched in figure 1.
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Starting with this turbulent flow at high Hartmann number and moderate Reynolds
number we shall next study the effects of first increasing the Reynolds number and
then reducing at constant Reynolds number the Hartmann number. In figure 13(a–f )
the change in turbulence structure is illustrated by the fluctuations u′ of the streamwise
velocity only.

The intermittent behaviour of the signal at M = 4800 and Re = 1.5 × 104 in
figure 12 changes at Re = 3.0×104 (figure 13a) to a quasi-periodic pattern representing
regular events from the passing of large vortices. By further increasing the Reynolds
number this high degree of order is lost. At Re = 6.0 × 104 the periodic pattern
is replaced by sudden large-amplitude excursions followed by quiet periods. Isolated
large fluctuations dominate the flow at Re = 1.0×105 and the flow may be considered
as an intermittently turbulent state containing vortices of different size and intensity.

The decrease of Hartmann number from M = 4800 (figure 13c) to M = 2400
(figure 13d ) at constant Reynolds number Re = 1.0 × 105 results in long periods
of quasi-regular oscillations with less-organized small-scale fluctuations in between.
Large fluctuations occur rarely. If the Hartmann number is further reduced to
M = 1200 (figure 13e) a more regular signal pattern emerges again. At M = 600
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(figure 13f) the turbulence intensity in terms of signal fluctuations gets significantly
weaker, but more irregular.

All recordings of u′ at the high Hartmann number M = 4800 are approximately
symmetric with regard to the zero value and the related vortices are interpreted to
occur in a more or less regular column at the wall side of the jet as demonstrated
in figure 13(a–c). At lower Hartmann numbers (figure 13d–f ) the large fluctuation
amplitudes recorded in the near-wall position of the probe are for the most part
negative and thus the large fluctuations occur mainly against the main direction of
flow. This observation can also be investigated qualitatively by evaluating the third-
order moments of the streamwise velocity u′3 and comparing their distribution along
the z-axis with the mean velocity u as it is done in figure 14.

At M = 4800 and Re = 3.0×104 (figure 14a) an anticlockwise direction of rotation
of the periodic vortex pattern is clearly demonstrated from the distribution of u′3.
We call this type of flow with downstream fluctuations close to the sidewall Type I
Instability. From the mean velocity distribution the centre of rotation (indicated by
a change in sign of u′3) of all vortices is obviously located in the outer, bulk-side
shear layer of the sidewall jet. The source of energy supply to these vortices therefore
originates from the jet shear layer facing the channel bulk flow (outer shear layer).

In figure 14(b) an opposite sense of rotation, namely clockwise rotation, is indicated
for M = 1200 and Re = 1.0× 105. This observation is interpreted as an instability of
the wall-side shear layer (inner shear layer) at the side of the jet adjacent to the wall
and is called Type II Instability. The vortices of this instability are generated in the
inner shear layer and are turning clockwise. However their centre of rotation, indicated
by the change in sign of u′3 lies on the inner side of the jet. This phenomenon cannot
be explained by the picture of a vortex column along the sidewall generated and
maintained by the shear of the sidewall jet. The time recordings of u′ in figure 13(b)
at this set of parameters indicate large fluctuations between long time periods with
upstream flow. These large vortices cause a breakdown of the jet structure in their
vicinity and a monotonic decrease of the core velocity to the sidewalls is obtained
as in OHD flows. Thus the direction of shear is in agreement with the clockwise
rotation of vortices. Between the isolated vortices the jet structure is maintained and
we observe by averaging over a long time period a mean velocity distribution with
sidewall jets. As the probe does not resolve the region z > 0.45 no information on the
flow structure of the wall-side shear layer is obtained from the present experiment.
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In figure 15(a) power spectra of all signals (u, jy , w) recorded at the position
z = 0.45 at the highest Hartmann number M = 4800 and the Reynolds number
Re = 3.0× 104 are plotted versus frequency.

All power spectra show a distinct peak which can be identified with the distance
between large vortices and their transport velocity at these parameters. Beyond this
peak the power decays steeply until the spatial resolution of the probe at f ≈ 10 is
reached. The power spectrum of the current density component in the direction of
magnetic field behaves in a similar way as those of the velocity components. But if
we calculate the frequency dependence of isotropy coefficients as was done in figure
11(a) from the same data, it becomes obvious that the higher isotropy of turbulence
in the high-frequency range is reflected in the energy spectra by a less steep decrease
of the current density component in the direction of magnetic field.

Since the characteristics of the spectral distribution of turbulent kinetic energy is
well represented by one velocity component, the power spectra are further discussed
only with the help of the streamwise velocity u. In figure 15(b) the effect of increasing
the Reynolds number at constant Hartmann number M = 4800 is shown. With regard
to the quasi-periodic signal at Re = 3.0×104 in figure 13(a) the less regular and more
intermittent states are reflected in the disappearance of the pronounced peak in the
spectra and, moreover, by the higher spectral power in the low-frequency range at
both higher and lower Reynolds number. In the high-frequency range all the power
spectra decay as f−4 which seems to be universal for such strongly non-homogeneous
anisotropic turbulence. The evaluation of power spectra for lower Hartmann numbers
has shown that generally the intensity of the fluctuations decreases for lower magnetic
fields; besides that fact the power spectra are similar.

We conclude that the turbulent flow in the side layers consists mostly of large scale
structures of l⊥ > 0.1a; smaller scales reaching down to the limit of spatial resolution
of the probe used do not contribute significantly to the integral flow quantities such
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as the turbulent kinetic energy or the Reynolds stresses discussed in the following
section.

5.4. Turbulent Reynolds stresses

In order to develop MHD turbulence models the distributions of time-averaged flow
quantities and the Reynolds stresses have to be known. The latter reduce in Q2D
flows to u′2, w′2 and u′w′.

In figure 16 the distribution of the Reynolds stresses u′2, w′2 and u′w′ are plot-
ted along the channel centreline between the Hartmann walls for the same set of
parameters as given in figure 14.

For the quasi-periodic signal of Type I Instability at M = 4800 and Re = 3.0× 104

the Reynolds stresses are confined to the sidewall regions. In the core no turbulent
transport of momentum is observed. The normal stress in the streamwise direction
u′2 shows two maxima that can be attributed to one-sided fluctuations in the down-
and upstream direction respectively caused by the bypassing vortices (see figure
1). The different peak values reflect the deformation of the vortices by the shear
in the jet. Corresponding to this interpretation the normal stress in the spanwise
direction w′2 has only one broad peak caused by the momentum exchange between
the regions of large u′2. In fully developed turbulent flow the tangential stress u′w′
is the only contribution of the Reynolds stress tensor that affects the mean velocity
distribution. In the region of one-sided downstream fluctuations u′w′ increases and
indicates momentum transport towards the core region. Momentum is transported
out of the region of one-sided upstream fluctuations towards the core as well as back
into the side layer. The decrease of the Reynolds stress to zero at the sidewall cannot
be detected by the probe because of the limited spatial resolution.

As the normal stresses are always positive definite the reverse rotation of Type
II Instability, discussed in § 5.3, figure 14(b), of the vortices for M = 1200 and
Re = 1.0×105 cannot be identified in figure 16(b). The large values of u′2 close to the
sidewall represent the zone of one-sided upstream fluctuations in the boundary layer;
the region of one-sided downstream fluctuations extends over a wider range. The
normal stress in the transverse direction is almost evenly distributed along the cross-
section. The continuous decrease of u′w′ from the side layer towards the core indicates
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that turbulent transport of momentum from the side layer region acts against the
streamwise pressure gradient in the whole core region.

From the non-vanishing normal stress in the core region it is obvious that turbulence
penetrates the whole cross-section. As the third-order moment in figure 14(b) indicates
no preferred direction of rotation in the core region, the turbulent motions there can
be considered as a relic of vortices that entered from both side layers into the core
region where they dissipate without being further forced by shear.

In perfect two-dimensional as well as in Q2D turbulent flows the turbulent kinetic
energy is defined by two velocity components only, i.e. k2D = ( 1

2
)(u′2 + w′2). In order

to quantify the turbulence intensity in different flow regions its distribution along z is
plotted in figure 17.

At constant high Hartmann number M = 4800 (figure 17a) the turbulent kinetic
energy in the sidewall region reaches comparable values of about k2D = 0.025 although
the Reynolds number is varied within considerable range 1.5× 104 < Re < 1.0× 105.
When the Hartmann number is increased from M = 600 up to M = 4800 at constant
Reynolds number Re = 3.0× 104 (see figure 17b), a continuous increase of turbulent
kinetic energy in the side layers is observed and the turbulence promoting effect of
the magnetic field is well illustrated.

Although a considerable decrease of turbulent kinetic energy from the side layer
to the core region is observed in all measurements, the flow close to the centreplane
remains weakly turbulent for some parameters investigated, e.g. Re = 3.0 × 104 and
M = 1200. In figure 18 the turbulent kinetic energy in the symmetry plane z = 0
is plotted versus the dimensionless decay time of Q2D flow given by relation (3.3)
assuming for all parameters the same transverse length scale of the vortices l⊥ = 0.4.

A clear increase of the turbulent kinetic energy in the centreplane is observed for
increasing decay time. This finding is consistent with the conjecture that turbulent
Q2D eddies being released from the turbulent side layers can penetrate the core
region before their kinetic energy is removed by Hartmann braking.

Although there is some weak turbulence in the core region at high Reynolds
numbers and low Hartmann numbers, a laminar core flow is clearly observed for
high Hartmann numbers and for moderate Reynolds numbers as shown in figure
16(a) and an evaluation of the width δ of the turbulent side layers becomes possible.
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In order to obtain a clear definition, δ is defined as the distance between the point
where the turbulent kinetic energy exceeds a threshold value of k2D = 1 × 10−3 and
the sidewall.

In figure 19(a) the width of the turbulent side layer at constant Hartmann numbers
M = 4800, M = 3400 and M = 2400 is plotted as a function of the Reynolds number.

Linear interpolation of the measured values shows that the width increases at
constant Hartmann number as the power Re0.3± 0.02. In figure 19(b) the width of the
turbulent side layer at an overall constant Reynolds number evaluated from the same
measurements is plotted as a function of the Hartmann number. Here a functional
decrease as the power M−0.53± 0.07 is found which is different from the power law
M−0.5 of the laminar jet except for the highest Reynolds number. Combining both
results to give δ ∼ Re0.3± 0.02M−0.53± 0.07 and expressing the Reynolds number in terms
of M and N, however, one observes that δ becomes almost independent of M and
it depends on N as δ ∼ N−0.3± 0.02. This result confirms with adequate accuracy the
assumption by Reed & Picologlou (1989) that δ ∼ N−1/3.

Although important for the transport of passive scalar quantities such as heat, the
presence of non-zero turbulent kinetic energy does not necessarily mean that there
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is turbulent transport in this region. Therefore, the dependence of u′w′ on the same
set of parameters as used for the graph of the turbulent kinetic energy in figure 17 is
shown in figure 20.

The magnitude of the Reynolds stresses in the side layer is similar to that of the
turbulent kinetic energy and shows the same dependences on Reynolds and Hartmann
numbers. Within the range −0.2 < z < 0.2 almost no turbulent momentum transport
is observed unless turbulent kinetic energy is not vanishing in that region for some
parameters, e.g. M = 2400 and Re = 3.0 × 104. Therefore changes of the mean flow
by turbulent momentum transport can be expected to be limited to the side layer
regions.

5.5. The isothermal mean flow

Figure 21 shows the influence of turbulent momentum transport on the distribution of
the streamwise mean velocity u in the channel midplane. As the velocity distribution
of laminar MHD duct flows is governed by the Hartmann number only, the graphs
are presented for constant Hartmann numbers, i.e. M = 600 and M = 4800. From
figure 21 the growing influence of the Reynolds number is clearly demonstrated when
the flow becomes time-dependent.

It is clearly seen for the smallest Hartmann number M = 600 in figure 21(a) that the
turbulent transport of momentum leads to decreasing peak velocities in the sidewall
jet. The velocity minimum in the region between the core region and the wall jet
disappears while the width of the jet increases. The core region remains at a uniform
velocity distribution whose level is slightly increasing with Reynolds number by an
enhanced momentum transfer from the side layers. For the strong magnetic field with
M = 4800 (see figure 21b) the core velocity remains almost unchanged in spite of the
increasing Reynolds numbers. In this case turbulent transfer of momentum results in
a significant increase of the width of the side layer. The velocity peak in the region
close to the wall cannot be measured by the probe because of its limited spatial
resolution, but the decrease of the velocity with increasing Reynolds numbers can
nevertheless clearly be recognized. Moreover, the minimum of the laminar velocity
profile adjacent to the core region seems to move towards the centre of the duct
at higher Hartmann numbers. But in the case of highly organized turbulent flow
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Figure 21. Distribution of the mean streamwise velocity u in the midplane (y = 0). The effect of
turbulent momentum transport by increased Reynolds number is shown for Hartmann numbers
(a) M = 600 and (b) M = 4800.

occurring at Re = 3.0 × 104 this minimum is caused by another effect than that for
the laminar flow. In fact, it can be identified with the region of upstream fluctuations
of the organized vortex pattern along the sidewall. As the mean velocity has been
measured only in the midplane of the channel, no direct information on the mean
velocity distribution in the direction of the magnetic field is available. Assuming the
existence of two-dimensional vortex columns we expect a flattening of the parabolic
shape of the laminar sidewall jets.

From an engineering point of view the increase in the pressure drop due to
turbulent dissipation is a particular point of interest for any hydraulic design. Tillack
(1990) derived an analytical relation for the pressure drop of laminar MHD flow
in rectangular ducts with conducting walls for large Hartmann numbers. With the
scaling introduced in § 2 this relation is

∂p

∂x
= −ξ = −M

2

Re

[
1

3b/a

√
M

1 + cS
√
M

+
1 + cH

cH + 1/M

]−1

. (5.1)

From this relationship, the non-dimensional pressure drop coefficient ξ can be calcu-
lated for particular Hartmann and Reynolds numbers. The geometry and the electrical
properties of the duct are accounted for by the scaled width b/a and the conductance
ratios cH and cS . In figure 22 the measured pressure drop coefficient ξ is compared
with the predicted pressure drop for laminar flow calculated using relation (5.1).

At constant Hartmann number the pressure drop of laminar flow, denoted by
solid lines, is predicted to decay as Re−1. When the Reynolds number is increased
beyond the critical value, additional contributions to the pressure drop by dissipation
of turbulent kinetic energy should become visible by a less steep decrease of the
pressure drop with the Reynolds number in the turbulent regime. Nevertheless, the
measurements represented by the symbols agree very well with the calculations given
by solid lines in the laminar as well as in the turbulent region. No change in the slope
of the laminar flow curve is observed even for the lowest Hartmann number and for
high Reynolds numbers.

This result is not surprising because the Reynolds stresses enter the dimensionless
momentum equation with a factor 1/N with respect to the electromagnetic forces that
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predictions assuming laminar MHD flow denoted by solid lines (equation (5.1)).

mainly govern the pressure gradient (see § 2). With N not small a significant increase
of the pressure drop cannot be expected.

We conclude that additional pressure losses resulting from dissipation of kinetic
energy of Q2D turbulence contribute little to the overall losses in MHD flow origi-
nating from Joule’s dissipation. Therefore, hydraulic designs for fully developed flow
can be carried out by using the laminar pressure relation given by (5.1) to calculate
the pressure drop even in turbulent rectangular duct flows.

6. Results for non-isothermal flow
For investigating heat transport phenomena, a heat flux of 15 W cm−2 is applied to

one sidewall of the test section. The experiments are carried out in the same range
of Hartmann and Reynolds numbers as in the case of isothermal flow. In addition,
temperature measurements of MHD flows are compared with those of OHD flow
indicated by M = 0. The Péclet number is evaluated from the Reynolds and Prandtl
numbers according to the relation Pe = Re Pr with Pr = 0.03 for NaK at 60 ◦C. In
the range of strong turbulent flow at 1.5×104 < Re < 1.0×105 Péclet numbers in the
range 450 < Pe < 3000 are achieved. With a heated length of x = 12.5 the thermal
developing length ζ (see § 3.2) is always smaller than unity and thus the flow is far
from fully developed thermal conditions.

Because of the layered structure of the flow and the high degree of order in the
region of high turbulence intensities, the turbulent transport of heat is expected to be
significantly different from OHD flows. To identify the dominant phenomena we first
present measurements of local flow quantities and transport properties performed
with the help of a traversable probe. The consequences of turbulent heat transport
on the heat transfer at the sidewall will be discussed later based on measurements of
wall temperatures.

6.1. The structure of temperature fluctuations

As the thermal conductivity of liquid metals is very high, disturbances of the tem-
perature field decay fast and, therefore, heat is transported effectively only by large
vortices, mixing regions of hot and cold fluid. In figure 23 the time series of the
velocity and temperature fluctuations, u′ and T ′ are plotted for a constant Reynolds
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flows at (b) M = 1200 and (c) M = 4800.

number Re = 3.0× 104. The Hartmann number is increased from an OHD flow with
M = 0 to MHD flow with M = 1200 and M = 4800. The probe is located in the
midplane and close to the wall at z = 0.45.

The time series for the temperature recorded in OHD flow shows a typical ran-
dom distribution of turbulent fluctuations. Since there is no magnetic field, velocity
measurements with the help of potential probes are not possible.

For the Hartmann number M = 1200 the time series of the fluctuating velocity u′
shows a strong intermittent behaviour. The convective heat transport of large vortices
induces distinct disturbances in the temperature field whereas the effect of small-
scale velocity perturbations is negligible. At the Hartmann number of M = 4800 the
turbulence in the side layer is well ordered but the degree of order is not as high
as for the isothermal flow shown in figure 13(a). One of the reasons for this effect
may be the non-homogeneous physical properties such as viscosity of the liquid metal
caused by the temperature gradient in the close wall region. Since the mean flow has
been observed to be only weakly changed by this effect this point is not discussed
further. The temperature field essentially follows the velocity fluctuations, indicating
effective convective transport. But the lack of high-frequency contributions results
in an obviously smoother temperature signal. In figure 24 the power spectra of the
temperature T and the streamwise velocity component u are compared.
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MHD flows at (b) M = 1200 and (c) M = 4800. The probe is located close to the wall at z = 0.45.

Increasing the Hartmann number from M = 1200 to M = 4800 the velocity
spectrum is shifted towards higher frequencies. As small-scale fluctuations of the
temperature are damped on a fast time scale the temperature field does not follow
the fluctuations of the velocity field. The power spectrum of the temperature for
M = 4800 starts to decrease at a significantly lower cutoff frequency than the velocity
spectrum. In figure 24 the dimensional frequency of the spectrum is also shown.
As most of the intensity of the temperature power spectrum is concentrated in the
frequency range below 50 Hz the temporal resolution of the thermocouples is proven
to be adequate for this experiment.

6.2. Turbulent heat fluxes

For two-dimensional turbulence with v′ ≈ 0 only the two components perpendicular
to the magnetic field u′T ′ and w′T ′ of turbulent heat flux remain non-negligible. These
can be measured by the four-electrode probe used. In figure 25 typical distributions
of the turbulent heat fluxes are plotted for a Type I Instability (see § 5.3) at a low
Reynolds number Re = 1.5× 104 and a high Hartmann number M = 4800 and for a
Type II Instability at a high Reynolds number Re = 1.0 × 105 and a low Hartmann
number M = 1200.

For the Type I Instability in figure 25(a), forming a counter-clockwise rotating
vortex street, the distribution of the turbulent heat fluxes can be explained as follows.
The positive value of u′T ′ in a thin boundary layer region of about 0.06a width
indicates turbulent transport of heat in the downstream direction. The negative
values of w′T ′ in this range demonstrate the heat flux from the wall towards the
core. In the zone adjacent to the laminar core where fluctuations occur mostly in the
upstream direction, the vortices are convecting heat upstream and the boundary zone
heats up. This induces a reverse turbulent heat transport towards the heated sidewall
which is indicated by the positive values of w′T ′ in most of the side layer region.

In spite of the clockwise rotation of vortices for the Type II Instability we find
positive values of u′T ′ in the near-wall region as well as negative values of w′T ′ (see
figure 25b). The turbulent flow with low degree of organization causes an intense
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fluxes u′T ′ and w′T ′ in the midplane at constant Reynolds number Re = 3.0× 104.

mixing of hot and cold fluid in the centre part of the side layer. Therefore no reverse
heat transfer is observed in the layer.

In figure 26 the influence of increasing Hartmann numbers on the turbulent heat
fluxes is shown for Re = 3.0× 104.

The strong changes of the turbulence structure with the Hartmann number compli-
cates the discussion of turbulent heat fluxes. However, an increase of the Hartmann
number from M = 600 to M = 2400 leads to a continuous increase of turbulent heat
transport which is indicated by increasing of both u′T ′ and w′T ′. With the further
increase of the Hartmann number to M = 4800 the turbulent heat fluxes seem to de-
crease according to the measurements. However the peak values might also be hidden
in the near-wall region where they are not accessible for measurements by our probe.

6.3. The non-isothermal mean flow

The occurrence of turbulent heat transport may significantly influence the distri-
bution of the mean temperature in the fluid. Developing thermal boundary layers
broaden from the turbulent mixing and as a consequence, at a constant wall heat
flux boundary condition, the temperature at the heated wall is reduced. Although
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probe measurements are not available up to the fluid–wall interface (z = 0.5), lower
temperatures in the near-wall region may serve as an indication of better heat transfer
at the heated wall.

In figure 27(a) the temperature distribution in the midplane at the Hartmann
number M = 600 is compared with OHD flow (M = 0) for the Reynolds numbers
Re = 3.0× 104 and Re = 6.0× 104 and Re = 1.0× 105.

The increase of the Reynolds number corresponds to a decrease of the thermal
development length (see § 3.2) and therefore the temperature is generally decreased.
Simultaneously the width of the thermal boundary layer, i.e. the regions of hot
fluid (T > 0), is decreased. Although significant turbulent heat fluxes have been
demonstrated in the previous subsection to occur at M = 600 (see figures 26a and
26b), the temperatures at the heated wall are much higher and the widths of the
thermal boundary layers are much smaller than for the OHD flows. Obviously,
the effect of Joule’s dissipation overrides the effect of turbulence promotion by the
magnetic field at this small Hartmann number and therefore the turbulent heat
transport at M = 600 is significantly lower than in case of OHD flow.

Figure 27(b) shows the influence of higher Hartmann numbers M = 1200 and
M = 4800 on the temperature profiles. Decreasing temperature values in the near-
wall region at higher magnetic fields clearly indicate an improvement of heat transfer
in the sidewall related to increased turbulent heat transport. Moreover, at M = 1200
the temperatures in the near-wall region are for all Reynolds numbers already
significantly lower than for OHD flow.
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measurements are compared with a boundary layer solution (u = 1) calculated from equation (3.4).

As has been discussed in § 5.4 for the highest Hartmann number M = 4800
turbulent velocity fluctuations are confined to the side layer region whereas the core
region remains laminar. Heat removed from the wall by the large coherent eddies is
transported to an intermediate area between the laminar core and the jet flow where
the formation of a laminar purely diffusive thermal boundary layer governs the heat
transport into the bulk channel flow. Thus, the turbulent side layer heats up to almost
a uniform temperature plateau. At higher Reynolds numbers, e.g. Re = 6.0 × 104,
the centres of the heat transporting vortices remain colder than the peripheral parts.
This can result in an accumulation of heat and a related higher temperature level
at the outer boundary of the wall jet. This effect may even lead to a negative mean
temperature gradient within the wall jet as it is clearly visible in figure 27(b) for the
parameter set Re = 6.0 × 104 and M = 4800. This phenomenon is known as the
countergradient heat flux effect since within the individual vortices the heat flux can
be transported against the mean driving temperature difference between the wall and
the bulk temperature.

6.4. The development of wall temperatures

For a uniform wall heat flux boundary condition, the critical spot for the design of a
heat transfer unit is always the end of the heated section because of the highest wall
temperatures at this location. As in OHD flows the thermal boundary layer develops
within a very short distance from the entrance of the heated section into a laminar
sublayer of the velocity boundary layer facing the sidewall. The downstream increase
of the wall temperature in this region is similar to that of laminar flows. When the
thermal boundary layer approaches the turbulent part of the side layer an intense
mixing of hot and cold fluid takes place. This turbulent transport of heat will reduce
the increase of the wall temperature compared to conditions of laminar flow and the
lower wall temperature at a certain entrance length is interpreted as an improvement
of heat transfer by turbulent transport.

In figure 28 the influence of increasing Hartmann numbers on the axial development
of the temperature at the heated wall is plotted for the Reynolds numbers Re =
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1.5× 104. The measurements are taken by thermocouples located in the middle of the
heated wall at y = 0 (see figure 3b). The resolution in the axial flow direction was
enhanced by moving the duct with respect to the fixed heater.

The measured values are compared with the solution of the heat transfer equation
(3.4) for laminar slug flow. Because of the heat conduction in the sidewall made of
stainless steel, the fluid is already slightly heated up when entering the heated section
at x = 0. At the beginning the temperature increases fast and compares very well with
the slug flow solution for TW . Beyond the entrance length x ≈ 5 a significant change
in the temperature slope is observed which is to be associated with the onset of active
mixing in the turbulent side layer. The most important observation is the general
decrease of the temperatures at the wall by the enhanced turbulence with increasing
Hartmann numbers in the region 2 6 x 6 10. However, one should be aware of the
fact that the formation of high-velocity jets at the heated wall improves heat transfer
even without the effect of turbulent transport. Naturally the heat conduction in
the sidewall causes the wall temperatures to decrease significantly before the heated
section ends at x = 12.25, so measured temperature values at positions beyond
x = 10.0 must be explained as end effects which are not relevant in this context.

7. Concluding remarks
Multipole temperature-potential probes are efficient tools to measure local flow

quantities as well as turbulent transport properties in turbulent liquid metal MHD
flows. Experimental data have been provided for the integral flow quantities pressure
drop and wall temperatures as well as for a number of important details on specific
turbulent properties in MHD duct flow. The investigation has been focused on the
behaviour of jets in the proximity of the walls parallel to the magnetic field.

In the range of parameters investigated, the turbulent velocity fluctuations are
strongly non-isotropic and the observed turbulent flow is quasi-two-dimensional
(Q2D). The turbulent flow pattern is dominated by large-scale vortex structures
with their axes aligned with the magnetic field, which are convected downstream
parallel to the sidewalls. In between the large vortices small-scale turbulent eddy
structures occur with a higher degree of isotropy, but their contribution to the tur-
bulent kinetic energy is small. The flow studied is an example in which the magnetic
field is enforcing a Q2D structure of turbulence and is simultaneously enhancing the
nonlinear processes, which is manifested in the increase of turbulence intensities and
Reynolds shear stresses in the proximity of the sidewall.

The first direct measurements of turbulent heat fluxes in MHD flow show that
the turbulent heat transport at the walls parallel to the magnetic field is significantly
enhanced with the increase of the intensity of the magnetic field. With this benefit of
turbulent heat transport, the flow rate in coolant channels of MHD heat transfer units
may be significantly reduced compared to design values based on laminar heat trans-
port correlations. Taking into account the negligible contribution of Q2D turbulence
to the overall pressure losses, the hydraulic design of piping networks under fully
developed MHD conditions can be carried out under the assumption of laminar flow.

The experimental results obtained may form a basis for the development of ad-
vanced MHD turbulence models to predict turbulent heat transfer even for larger
developing lengths of the thermal boundary layer.
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